What is the derivative of (1/(ab)) *tan^-1((b/a)*tanx)?

1 Answer
Apr 25, 2017

" The Reqd. Deri.="1/(a^2cos^2x+b^2sin^2x).

Explanation:

Let, y=1/(ab)tan^-1{(b/a)tanx}.

We will use the Chain Rule and Standard Derivative of tan^-1x.

Therefore, dy/dx=1/(ab)d/dx[tan^-1{(b/a)tanx}],

=1/(ab){1/{1+((b/a)tanx)^2}}[d/dx{(b/a)tanx},

=1/(ab){a^2/(a^2+b^2tan^2x)}{(b/a)sec^2x},

=sec^2x/(a^2+b^2tan^2x)

=(1/cos^2x)/{a^2+b^2(sin^2x/cos^2x)},

:." The Reqd. Deri.="1/(a^2cos^2x+b^2sin^2x).

Enjoy Maths.!