What is the derivative of 10log_4x/x?

2 Answers
Nov 18, 2017

Derivative is (10-10lnx)/(x^2ln4)

Explanation:

As log_4x=lnx/ln4, let us find the derivative of 10/ln4*lnx/x, using quotient formula for f(x)=(g(x))/(h(x))

(df)/(dx)=((dg)/(dx)xxh(x)-(dh)/(dx)xxg(x))/(h(x))^2

Hence d/(dx)10/ln4*lnx/x

= 10/ln4*(1/x*x-1xxlnx)/x^2

= 10/ln4*(1-lnx)/x^2

= (10-10lnx)/(x^2ln4)

Nov 18, 2017

(10(1/(ln4)-log_4x))/x^2

Explanation:

"differentiate using the "color(blue)"quotient rule"

"given "y=(g(x))/(h(x))" then "

dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr"quotient rule"

g(x)=10log_4xrArrg'(x)=10xx1/(xln4)

h(x)=xrArrh'(x)=1

rArrdy/dx=(x .10/(xln4)-10log_4x)/(x^2)

color(white)(rArrdy/dx)=(10(1/(ln4)-log_4x))/x^2