What is the derivative of 2^sin(pi*x)2sin(πx)?

2 Answers
Sep 27, 2015

d/dx2^(sin(pix))=2^(sin(pix))*ln2*cospix*(pi)ddx2sin(πx)=2sin(πx)ln2cosπx(π)

Explanation:

Using the following standard rules of differentiation:

d/dxa^(u(x))=a^u*lna*(du)/dxddxau(x)=aulnadudx

d/dx sinu(x) = cosu(x)*(du)/dxddxsinu(x)=cosu(x)dudx

d/dxax^n=nax^(n-1)ddxaxn=naxn1

We obtain the following result:

d/dx2^(sin(pix))=2^(sin(pix))*ln2*cospix*(pi)ddx2sin(πx)=2sin(πx)ln2cosπx(π)

Sep 27, 2015

Recall that:

d/(dx)[a^(u(x))] = a^u lna (du)/(dx)ddx[au(x)]=aulnadudx

Thus, you get:

d/(dx)[2^(sin(pix))]ddx[2sin(πx)]

= 2^(sin(pix))*ln2*[cos(pix)*pi]=2sin(πx)ln2[cos(πx)π]

= color(blue)(2^(sin(pix))ln2*picos(pix))=2sin(πx)ln2πcos(πx)

That means two chain rules. Once on sin(pix)sin(πx) and once on pixπx.