What is the derivative of 2^x2x?
1 Answer
Dec 14, 2015
Explanation:
Use the chain rule and the identity:
d/(dt) e^t = e^tddtet=et
Start by using properties of exponents:
2^x = (e^(ln 2))^x = e^(x ln 2)2x=(eln2)x=exln2
So if we put
(dt)/(dx) = ln 2dtdx=ln2
and:
d/(dx) 2^x = d/(dx) e^(x ln 2) = (dt)/(dx) d/(dt) e^t = e^t * ln(2)ddx2x=ddxexln2=dtdxddtet=et⋅ln(2)
=e^(x ln 2)*ln(2)=2^x*ln(2)=exln2⋅ln(2)=2x⋅ln(2)