What is the derivative of 2^x2x?

1 Answer
Dec 14, 2015

2^x*ln(2)2xln(2)

Explanation:

Use the chain rule and the identity:

d/(dt) e^t = e^tddtet=et

Start by using properties of exponents:

2^x = (e^(ln 2))^x = e^(x ln 2)2x=(eln2)x=exln2

So if we put t = x ln 2t=xln2, then:

(dt)/(dx) = ln 2dtdx=ln2

and:

d/(dx) 2^x = d/(dx) e^(x ln 2) = (dt)/(dx) d/(dt) e^t = e^t * ln(2)ddx2x=ddxexln2=dtdxddtet=etln(2)

=e^(x ln 2)*ln(2)=2^x*ln(2)=exln2ln(2)=2xln(2)