What is the derivative of 5x arcsin(x)?

1 Answer
Oct 12, 2017

5arcsinx+(5x)/sqrt(1-x^2)

Explanation:

"differentiate using the "color(blue)"product rule"

"given "y=g(x)h(x)" then"

dy/dx=g(x)h'(x)+h(x)g'(x)larr" product rule"

g(x)=5xrArrg'(x)=5

h(x)=arcsinxrArrh'(x)=1/sqrt(1-x^2)

rArrd/dx(5xarcsinx)

=5x xx1/sqrt(1-x^2)+arcsinx xx5

=5arcsinx+(5x)/sqrt(1-x^2)