What is the derivative of arcsin(1/x)arcsin(1x)?

1 Answer
Feb 16, 2018

(dy)/dx=(-1)/(xsqrt(x^2-1)dydx=1xx21

Explanation:

To find d/dx(arcsin(1/x))ddx(arcsin(1x))
arcsin(1/x)=sin^-1(1/x)arcsin(1x)=sin1(1x)
Let y=sin^=1(1/x)y=sin=1(1x)
Let u=1/xu=1x
(du)/dx=(-1)/x^2dudx=1x2
y=sin^-1uy=sin1u
(dy)/dx=1/sqrt(1-u^2)(du)/dxdydx=11u2dudx
Substituting the values of u and (du)/dxuanddudx
we have

(dy)/dx=1/sqrt(1-(1/x)^2)((-1)/x^2)dydx=11(1x)2(1x2)

Simplifying

(dy)/dx=(-1)/(x^2sqrt((x^2-1)/x^2)dydx=1x2x21x2
(dy)/dx=(-1)/(x^2sqrt(x^2-1)/xdydx=1x2x21x
(dy)/dx=(-x)/(x^2sqrt(x^2-1)dydx=xx2x21

(dy)/dx=(-1)/(xsqrt(x^2-1)dydx=1xx21