What is the derivative of arctan (cos 2t)?

2 Answers
Apr 21, 2018

-(2sin2t)/(1+cos^2 2t

Explanation:

"differentiate using the "color(blue)"chain rule"

"Given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"

rArrd/dt(arctan(cos2t))

=1/(1+(cos2t)^2)xxd/dt(cos2t)xxd/dt(2t)

=1/(1+cos^2 2t)xx-sin2txx2

=-(2sin2t)/(1+cos^2 2t)

Apr 21, 2018

(dy)/(dt)=-(2sin2t)/(1+cos^2 2t)

Explanation:

We know that,

color(red)((1)d/(dx)(tan^-1x)=1/(1+x^2)

color(blue)((2)d/(dx)(cosx)=-sinx

Let,

y=f(t)=tan^-1(cos2t)

Diff, w .r .to. color(violet)"(t)"

(dy)/(dt)=color(red)(1/(1+(cos2t)^2))xxd/(dt)(cos2t)..color(red)(toApply(1)

=>(dy)/(dt)=1/(1+cos^2 2t)xx(color(blue)(-sin2t))d/(dt)(2t) color(blue)(to Apply(2)

=>(dy)/(dt)=-(sin2t)/(1+cos^2 2t)xx2

i.e. (dy)/(dt)=-(2sin2t)/(1+cos^2 2t)