What is the derivative of arctan sqrt [ (1-x)/(1+x)]arctan1x1+x?

1 Answer
Jun 5, 2015

I got:

-(1)/(2sqrt(1-x^2))121x2


The derivative of arctanuarctanu is (1/(1+(u(x))^2))((du(x))/(dx))(11+(u(x))2)(du(x)dx).

So since u(x) = sqrt((1-x)/(1+x))u(x)=1x1+x:

d/(dx)(arctansqrt((1-x)/(1+x)))ddx(arctan1x1+x)

= 1/(1+(1-x)/(1+x))*(1/(2sqrt((1-x)/(1+x))))*[((1+x)*(-1) - (1-x)*(1))/(1+x)^2]=11+1x1+x⎜ ⎜121x1+x⎟ ⎟[(1+x)(1)(1x)(1)(1+x)2]

You can see there are multiple chain rules here.

= [(-1cancel(-x)-1cancel(+x))/(1+x)^2][1/(2sqrt((1-x)/(1+x))(1+(1-x)/(1+x)))]

Multiply in the sqrt((1-x)/(1+x)) and cancel out the 2:

= [(-cancel(2))/(1+x)^2][1/(cancel(2)(sqrt((1-x)/(1+x))+((1-x)/(1+x))^"3/2"))]

Merge the fractions:

= -(1)/((1+x)^"4/2"(sqrt((1-x)/(1+x))+((1-x)/(1+x))^"3/2"))

Multiply in the (1+x)^"4/2":

= -(1)/(sqrt(1-x)*(1+x)^"3/2"+(1-x)^"3/2"*sqrt(1+x)

Simplify by turning sqrt(1-x) and sqrt(1+x) into sqrt(1-x^2):

= -(1)/((1-x)^"1/2"(1+x)^"1/2"(1+x)+(1-x)(1-x)^"1/2"(1+x)^"1/2"

Factor out the sqrt(1-x^2) and cancel what's now inside:

= -(1)/(sqrt(1-x^2)*(1+x)+(1-x)*sqrt(1-x^2))

= -(1)/(sqrt(1-x^2)(1cancel(+x)+1cancel(-x)))

= color(blue)(-(1)/(2sqrt(1-x^2)))


Wolfram Alpha gives the derivative as (assuming x > 0)

= -(1)/(2sqrt(1-x^2)),

and in general, gives

sqrt((1-x)/(1+x))/(2(1-x)).