What is the derivative of arctan sqrt [ (1-x)/(1+x)]arctan√1−x1+x?
1 Answer
I got:
-(1)/(2sqrt(1-x^2))−12√1−x2
The derivative of
So since
d/(dx)(arctansqrt((1-x)/(1+x)))ddx(arctan√1−x1+x)
= 1/(1+(1-x)/(1+x))*(1/(2sqrt((1-x)/(1+x))))*[((1+x)*(-1) - (1-x)*(1))/(1+x)^2]=11+1−x1+x⋅⎛⎜ ⎜⎝12√1−x1+x⎞⎟ ⎟⎠⋅[(1+x)⋅(−1)−(1−x)⋅(1)(1+x)2]
You can see there are multiple chain rules here.
= [(-1cancel(-x)-1cancel(+x))/(1+x)^2][1/(2sqrt((1-x)/(1+x))(1+(1-x)/(1+x)))]
Multiply in the
= [(-cancel(2))/(1+x)^2][1/(cancel(2)(sqrt((1-x)/(1+x))+((1-x)/(1+x))^"3/2"))]
Merge the fractions:
= -(1)/((1+x)^"4/2"(sqrt((1-x)/(1+x))+((1-x)/(1+x))^"3/2"))
Multiply in the
= -(1)/(sqrt(1-x)*(1+x)^"3/2"+(1-x)^"3/2"*sqrt(1+x)
Simplify by turning
= -(1)/((1-x)^"1/2"(1+x)^"1/2"(1+x)+(1-x)(1-x)^"1/2"(1+x)^"1/2"
Factor out the
= -(1)/(sqrt(1-x^2)*(1+x)+(1-x)*sqrt(1-x^2))
= -(1)/(sqrt(1-x^2)(1cancel(+x)+1cancel(-x)))
= color(blue)(-(1)/(2sqrt(1-x^2)))
Wolfram Alpha gives the derivative as (assuming
= -(1)/(2sqrt(1-x^2)) ,
and in general, gives
sqrt((1-x)/(1+x))/(2(1-x)) .