What is the derivative of (arctanx)3?
1 Answer
Apr 11, 2017
ddxarctan3x=3arctan2xx2+1
Explanation:
By the chain rule we have:
ddx(arctanx)3=ddxarctan3x
=3arctan2x⋅ddx(arctanx)
And:
ddx(arctanx)=1x2+1
And so:
ddxarctan3x=3arctan2xx2+1