What is the derivative of arctan(x - sqrt(1+x^2))arctan(x1+x2)?

1 Answer

=>(dy)/(dx)=1/(2(1+x^2)dydx=12(1+x2)

Explanation:

We know that,

color(blue)((1)1-costheta=2sin^2(theta/2) and sintheta=2sin(theta/2)cos(theta/2)(1)1cosθ=2sin2(θ2)andsinθ=2sin(θ2)cos(θ2)

color(violet)((2)arc tan (-alpha)=-arc tanalpha(2)arctan(α)=arctanα

color(green)((3)arc tan(tanphi)=phi ,where,phi in(-pi/2,pi/2)(3)arctan(tanϕ)=ϕ,where,ϕ(π2,π2)

Let

y=arc tan(x-sqrt(1+x^2))y=arctan(x1+x2)

We take, color(brown)(x=cottheta=>theta=arc cotx,where,theta in(0,pi)=>theta/2in(0,pi/2)x=cotθθ=arccotx,where,θ(0,π)θ2(0,π2)

So,

y=arc tan(cottheta-sqrt(1+cot^2theta))to[use : color(red)(1+cot^2theta=csc^2theta]y=arctan(cotθ1+cot2θ)[use:1+cot2θ=csc2θ

=>y=arc tan(costheta/sintheta-csctheta)y=arctan(cosθsinθcscθ)

=>y=arc tan (costheta/sintheta-1/sintheta)y=arctan(cosθsinθ1sinθ)

=>y=arc tan((costheta-1)/sintheta)...tocolor(violet)(Apply(2)

=>y=arc tan{-((1-costheta)/sintheta)}

=>y=-arc tan((1-costheta)/sintheta)...tocolor(blue)(Apply(1)

=>y=-arc tan((2sin^2(theta/2))/(2sin(theta/2)cos(theta/2)))

=>y=-arc tan((sin(theta/2))/cos(theta/2))

=>y=-arc tan(tan(theta/2)).tocolor(green)(Apply(3) ,as ,theta/2in(0,pi/2)

=>y=-theta/2

Subst. back , color(brown)(theta=arc cotx

y=-1/2*arc cotx

=>(dy)/(dx)=-1/2*(-1/(1+x^2))

=>(dy)/(dx)=1/(2(1+x^2)