What is the derivative of (cos x)^(sin x)?

1 Answer
Nov 27, 2016

Let y = (cosx)^sinx.

Then lny = ln(cosx)^sinx.

We apply the laws of logarithms to simplify as follows:

lny = sinxln(cosx)

We now use the chain rule to differentiate ln(cosx).

Letting y= lnu and u = cosx, we have

dy/dx = dy/(du) xx (du)/dx

dy/dx = 1/u xx -sinx

dy/dx= -sinx/cosx

dy/dx= -tanx

Differentiating the entire function now with a combination of implicit differentiation and the product rule, we have:

1/y(dy/dx) = cosx xx ln(cosx) + sinx xx -tanx

dy/dx = y(cosxln(cosx) - sin^2x/cosx)

dy/dx= (cosx)^sinx(cosxln(cosx) - sin^2x/cosx)

Hopefully this helps!