What is the derivative of (cosx)^x?

2 Answers
May 28, 2017

d/dx((cosx)^x) = (lncosx -x/sinx)(cosx)^x

Explanation:

Let f(x) =(cosx)^x

lnf(x)= xlncosx

(f'(x))/(f(x)) = lncosx - x/sinx

f'(x) = f(x)(lncosx-x/sinx)

f'(x) = (lncosx -x/sinx)(cosx)^x

May 28, 2017

d/dxcos^x(x)=cos^x(x)(-xtan(x)+ln(cos(x)))

Explanation:

Step 1. Express cos(x)^x as a power of e.

d/dxcos^x(x)=d/dxe^(ln(cos^x(x)))=d/dxe^(xln(cos(x)))

Step 2. Use the chain rule with u=xln(cos(x)) and d/(du)(e^u)=e^u

Chain Rule: d/dx(e^(xln(cos(x))))=(de^u)/(du)(du)/(dx)

(de^u)/(du)=e^u

(du)/(dx)=d/dxxln(cos(x))

Using the Product Rule

(du)/(dx)=d/dxxln(cos(x))=x d/dxln(cos(x))+ln(cos(x))dx/dx

(du)/(dx)=x(1/cos(x)(-sin(x)))+ln(cos(x))(1)

(du)/(dx)=-xtan(x)+ln(cos(x))

Plugging it back in to the Chain Rule

color(blue)((de^u)/(du))color(red)((du)/(dx))=color(blue)(e^(xln(cos(x))))color(red)((-xtan(x)+ln(cos(x))))

Simplifying a bit gives

(de^u)/(du)(du)/(dx)=cos^x(x)(-xtan(x)+ln(cos(x)))