What is the derivative of f(x)=2lnx^3?

2 Answers
May 26, 2015

Using the chain rule, we can rename u=x^3, and thus, start working with f(x)=f(u)=2ln(u).

The chain rule states that

(dy)/(dx)=(dy)/(du)(du)/(dx)

So,

(dy)/(du)=2*1/u=2/u

(du)/(dx)=3x^2

Thus,

(dy)/(dx)=2/u*3x^2=(6x^2)/u=(6cancel(x^2))/x^cancel(3)=color(green)(6/x)

May 26, 2015

Alternative solution:

f(x) = 2lnx^3=6lnx

So,

f'(x) = 6 * 1/x = 6/x