What is the derivative of f(x) = arcsin(-10 x - 4)/9f(x)=arcsin(10x4)9?

1 Answer
Jan 15, 2018

(dy)/(dx)=-10/(9sqrt(1-(10x+4)^2)dydx=1091(10x+4)2

Explanation:

As y=f(x)=arcsin(-10x-4)/9y=f(x)=arcsin(10x4)9

arcsin(-10x-4)=9yarcsin(10x4)=9y or sin(9y)=-10x-4sin(9y)=10x4

i.e. sin(9y)+10x+4=0sin(9y)+10x+4=0

and differentiating

9cos(9y)(dy)/(dx)+10=09cos(9y)dydx+10=0

or (dy)/(dx)=-10/(9cos(9y))dydx=109cos(9y)

= -10/(9sqrt(1-sin^2(9y))1091sin2(9y)

= -10/(9sqrt(1-(10x+4)^2)1091(10x+4)2