What is the derivative of f(x)=arctan(2^x)?

1 Answer
Apr 11, 2018

(2^xln2)/(2^(2x)+1)

Explanation:

Apply the chain rule:

dy/dx=dy/(du)*(du)/dx

Let u=2^x,:.(du)/dx=2^x*ln2

Then, y=arctanu,:.dy/(du)=1/(u^2+1)

And so,

dy/dx=1/(u^2+1)*2^x*ln2

=(2^xln2)/(u^2+1)

Undo the substitution to get:

=(2^xln2)/((2^x)^2+1)

=(2^xln2)/(2^(2x)+1)