What is the derivative of f(x)=cosx/(1+sin^2x)?

1 Answer
Oct 28, 2015

(dy/dx) =- (sin{x})/(1+sin^2{x}) - (2cos^2{x}sin{x})/(1+sin^2{x})^2

Explanation:

Standard form reference: if y=u/v then (dy)/dx =(v((du)/dx)-u((dv)/dx))/v^2

Considering section at a time

Let u=cos(x) -> (du)/dx= -sin(x)
Let v=1 +sin^2(x) -> (dv)/dx = 2sin(x)cos(x)

Thus " " (dy)/dx= (( 1+sin^2{x})(-sin{x}) - (cos{x})( 2sin{x}cos{x} ))/((1+sin^2{x})^2

from which you derive

(dy/dx) =- (sin{x})/(1+sin^2{x}) - (2cos^2{x}sin{x})/(1+sin^2{x})^2