What is the derivative of f(x)=ln(2x^2-4x)/x?

1 Answer
Nov 12, 2016

f'(x) = ((2x^2)/(x^2 - 2) - ln(2x^2 - 4x))/(x^2)

Explanation:

Start by using the chain rule to differentiate y = ln(2x^2 - 4x).

Let y = lnu and u = 2x^2 - 4.

dy/dx = 1/u xx 4x = (4x)/(2x^2 - 4) = (2(2x))/(2(x^2 - 2)) = (2x)/(x^2 - 2)

By the quotient rule:

f'(x) = ((2x)/(x^2 - 2) xx x - 1 xx ln(2x^2 - 4x))/(x)^2

f'(x) = ((2x^2)/(x^2 - 2) - ln(2x^2 - 4x))/(x^2)

Hopefully this helps!