What is the derivative of f(x)=ln(x/sinx)?

1 Answer
May 13, 2018

d/dx (ln(x/sinx)) = 1/x-cotx

Explanation:

Using the chain rule:

d/dx (ln(x/sinx)) = 1/(x/sinx) d/dx (x/sinx)

now using the quotient rule:

d/dx (ln(x/sinx)) = sinx/x (sinx-xcosx)/sin^2x

and simplifying:

d/dx (ln(x/sinx)) = (sinx-xcosx)/(xsinx)

d/dx (ln(x/sinx)) = 1/x-cotx