f(x) can be written as f(x)=(x+5)^2/(x^2+2)^2=u/v
The quotient rule says that if f(x)=g(x)/(h(x)), then f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2
In this case:
g(x)=(x+5)^2
g'(x)=[d/dx(x+5)*d/dx(u^2)],u=(x+5)
g'(x)=1*2u
g'(x)=1*2(x+5)
g'(x)=2(x+5)
h(x)=(x^2+2)^2
h'(x)=[d/dx(x^2+2)*d/dx(u^2)],u=(x^2+2)
h'(x)=2x*2u
h'(x)=2x*2(x^2+2)
h'(x)=4x(x^2+2)
f'(x)=((x^2+2)^(2)2(x+5)-(x+5)^(2)4x(x^2+2))/((x^2+2)^2)^2
f'(x)=(2(x^2+2)^2(x+5)-4x(x+5)^(2)(x^2+2))/(x^2+2)^4
f'(x)=(2(x^2+2)(x+5)-4x(x+5)^2)/(x^2+2)^3
f'(x)=(2(x+5)((x^2+2)-2x(x+5)))/(x^2+2)^3
f'(x)=(2(x+5)(-x^2-10x+2))/(x^2+2)^3
f'(x)=-(2(x+5)(x^2+10x-2))/(x^2+2)^3