What is the derivative of ln(1/x)ln(1x)?

1 Answer
Dec 25, 2015

We'll need the chain rule here, which states that (dy)/(dx)=(dy)/(du)(du)/(dx)dydx=dydududx

Explanation:

In this case, we must rename u=(1/x)u=(1x) and now derivate the function y=lnuy=lnu. Let's do it separately, step-by-step:

(dy)/(du)=1/udydu=1u

(du)/(dx)=-1/x^2dudx=1x2

(dy)/(dx)=-1/(ux^2)dydx=1ux2

Substituting uu:

(dy)/(dx)=-1/((1/x)x^2)=-1/xdydx=1(1x)x2=1x