What is the derivative of [ln(2-3x)/lnx]^[arccos(2-5x)]?

1 Answer
Aug 22, 2015

y^' = [ln(2-3)/lnx]^(arccos(2-5x)) * [5/sqrt(1-(2-5x)^2) * ln(ln(2-3x)/lnx) + 1/ln(2-3x) * (-3/(2-3x) - ln(2-3x)/(x * lnx)) * arccos(2-5x)]

Explanation:

!! EXTREMELY LONG ANSWER !!

The most important derivation rule you'll need to use to differentiate this function is the power rule for a variable base and a variable power.

color(blue)(d/dx(f(x)^g(x)) = f(x)^g(x) * d/dx[ln(f(x)) * g(x)])

In your case, you have f(x) = ln(2-3x)/ln(x) and g(x) = arccos(2-5x). Now, I will assume that you know the derivative of arccosx

d/dx(arccosx) = -1/(sqrt(1-x^2)

Ok, buckle up because the calculations will be color(red)("horrendous").

So, start your calculation by writing the derivative of y = f(x)^g(x) using the power rule. To keep the calculations as compact as possible, I'll use f(x) =f and g(x) = g from this point on.

d/dx(y) = f^g * d/dx(ln(f) * g)" "color(purple)((1))

Use the product rule to find

d/dx(ln(f) * g) = [d/dxln(f)] * g + ln(f) * d/dx(g)" "color(purple)((2))

Now break this calculation into two different ones. The first one will be

d/dxln(f) = d/dx[ln(ln(2-3x)/lnx)]

Use the quotient rule once and the chain rule twice, once for ln(u), with u = ln(2-3x)/lnx, and once more for ln(v), with v = 2-3x).

d/dx(ln(u)) = d/(du)ln(u) * d/dx(u) " "color(purple)((3))

d/dx(u) = ([d/dxln(2-3x)] * lnx - ln(2-3x) * d/dx(lnx))/(lnx)^2 " "color(purple)((4))

Use the second chain rule substitution to get

d/dx(lnv) = d/(dv)lnv * d/dx(v)

d/dx(lnv) = 1/v * d/dx(2-3x)

d/dx(ln(2-3x)) = 1/(2-3x) * (-3)

Plug this back into color(purple)((4)) to get

d/dx(u) = (-3/(2-3x) * lnx - ln(2-3x) * 1/x)/ln^2x

Now take this result back to color(purple)((3)) to get

d/dx(ln(u)) = 1/u * (-3/(2-3x) * lnx - ln(2-3x) * 1/x)/ln^2x

d/dx(ln(f)) = color(red)(cancel(color(black)(lnx)))/ln(2-3x) * (-3/(2-3x) * lnx - ln(2-3x) * 1/x)/ln^color(red)(cancel(color(black)(2)))x

d/dx(lnf) = 1/ln(2-3x) * (-3/(2-3x) - ln(2-3x)/(x * lnx))

From color(purple)((2)), focus on finding d/dx(g)

d/dx(g) = d/dx(arccos(2-5x))

You're going to have to use th chain rule once for arccost, with t = 2-5x)

d/dx(arccost) = d/(dt)arccost * d/dx(t)

d/dxarccost = -1/(sqrt(1-t^2)) * d/dx(2-5x)

d/dx(arccos(2-5x)) = -1/sqrt(1-(2-5x)^2) * (-5)

d/dx(g) = 5/sqrt(1-(2-5x)^2)

Take everyting back to color(purple)((2)) to get

d/dx(ln(f) * g) = 1/ln(2-3x) * (-3/(2-3x) - ln(2-3x)/(x * lnx)) * arccos(2-5x) + ln(ln(2-3x)/lnx) * 5/sqrt(1-(2-5x)^2)

Finally, take this back to color(purple)((1)) to get

y^' = color(green)([ln(2-3)/lnx]^(arccos(2-5x)) * [5/sqrt(1-(2-5x)^2) * ln(ln(2-3x)/lnx) + 1/ln(2-3x) * (-3/(2-3x) - ln(2-3x)/(x * lnx)) * arccos(2-5x)])