What is the derivative of [ln(2-3x)/lnx]^[arccos(2-5x)]?
1 Answer
Explanation:
!! EXTREMELY LONG ANSWER !!
The most important derivation rule you'll need to use to differentiate this function is the power rule for a variable base and a variable power.
color(blue)(d/dx(f(x)^g(x)) = f(x)^g(x) * d/dx[ln(f(x)) * g(x)])
In your case, you have
d/dx(arccosx) = -1/(sqrt(1-x^2)
Ok, buckle up because the calculations will be
So, start your calculation by writing the derivative of
d/dx(y) = f^g * d/dx(ln(f) * g)" "color(purple)((1))
Use the product rule to find
d/dx(ln(f) * g) = [d/dxln(f)] * g + ln(f) * d/dx(g)" "color(purple)((2))
Now break this calculation into two different ones. The first one will be
d/dxln(f) = d/dx[ln(ln(2-3x)/lnx)]
Use the quotient rule once and the chain rule twice, once for
d/dx(ln(u)) = d/(du)ln(u) * d/dx(u) " "color(purple)((3))
d/dx(u) = ([d/dxln(2-3x)] * lnx - ln(2-3x) * d/dx(lnx))/(lnx)^2 " "color(purple)((4))
Use the second chain rule substitution to get
d/dx(lnv) = d/(dv)lnv * d/dx(v)
d/dx(lnv) = 1/v * d/dx(2-3x)
d/dx(ln(2-3x)) = 1/(2-3x) * (-3)
Plug this back into
d/dx(u) = (-3/(2-3x) * lnx - ln(2-3x) * 1/x)/ln^2x
Now take this result back to
d/dx(ln(u)) = 1/u * (-3/(2-3x) * lnx - ln(2-3x) * 1/x)/ln^2x
d/dx(ln(f)) = color(red)(cancel(color(black)(lnx)))/ln(2-3x) * (-3/(2-3x) * lnx - ln(2-3x) * 1/x)/ln^color(red)(cancel(color(black)(2)))x
d/dx(lnf) = 1/ln(2-3x) * (-3/(2-3x) - ln(2-3x)/(x * lnx))
From
d/dx(g) = d/dx(arccos(2-5x))
You're going to have to use th chain rule once for
d/dx(arccost) = d/(dt)arccost * d/dx(t)
d/dxarccost = -1/(sqrt(1-t^2)) * d/dx(2-5x)
d/dx(arccos(2-5x)) = -1/sqrt(1-(2-5x)^2) * (-5)
d/dx(g) = 5/sqrt(1-(2-5x)^2)
Take everyting back to
d/dx(ln(f) * g) = 1/ln(2-3x) * (-3/(2-3x) - ln(2-3x)/(x * lnx)) * arccos(2-5x) + ln(ln(2-3x)/lnx) * 5/sqrt(1-(2-5x)^2)
Finally, take this back to
y^' = color(green)([ln(2-3)/lnx]^(arccos(2-5x)) * [5/sqrt(1-(2-5x)^2) * ln(ln(2-3x)/lnx) + 1/ln(2-3x) * (-3/(2-3x) - ln(2-3x)/(x * lnx)) * arccos(2-5x)])