What is the derivative of ln((2x-1)/(x-1))?

1 Answer
Jul 15, 2016

dy/dx=1/((2x-1)(x-1))ln{(x-1)/(2x-1)}

Explanation:

Let y=ln{(2x-1)/(x-1)}

Before Diif.ing y, we simplify Y using the Rules of Log. Funs.

y={(2x-1)/(x-1)} rArr lny=ln(2x-1)-ln(x-1)

Diff.ing both sides w.r.t. x,

d/dxlny=d/dx{ln(2x-1)-ln(x-1)}=d/dxln(2x-1)-d/dxln(x-1)

But, by Chain Rule, d/dxlny=d/dylny*dy/dx=1/y*dy/dx

Hence,

1/ydy/dx=1/(2x-1)*d/dx(2x-1)-1/(x-1)*d/dx(x-1)

=2/(2x-1)-1/(x-1)={2(x-1)-(2x-1)}/{(2x-1)(x-1)}=-1/((2x-1)(x-1))

:. dy/dx=-y/((2x-1)(x-1))=-ln{(2x-1)/(x-1)}/((2x-1)(x-1)), or,

dy/dx=1/((2x-1)(x-1))ln{(x-1)/(2x-1)}