What is the derivative of (ln(sin(2x)))^2?

1 Answer
May 16, 2017

d/dx((ln(sin(2x)))^2)=4cot2xln(sin(2x))

Explanation:

If we let y=(ln(sin(2x)))^2, then we can find the derivative of y using the chain rule. But first, we will have to define the composition of the functions we need to differentiate.

Let y=u^2

and u=lnv

and v=sinw

and w=2x

Then,

dy/dx=dy/(du)xx(du)/(dv)xx(dv)/(dw)xx(dw)/dx

dy/(du)=2u=2lnv=2ln(sinw)=2ln(sin(2x))

(dv)/(du)=1/v=1/sinw=1/sin(2x)

(dv)/(dw)=cosw=cos(2x)

(dw)/dx=2

dy/dx=2ln(sin(2x))xx1/sin(2x)xxcos(2x)xx2

=4cot(2x)ln(sin(2x))