If we let y=(ln(sin(2x)))^2, then we can find the derivative of y using the chain rule. But first, we will have to define the composition of the functions we need to differentiate.
Let y=u^2
and u=lnv
and v=sinw
and w=2x
Then,
dy/dx=dy/(du)xx(du)/(dv)xx(dv)/(dw)xx(dw)/dx
dy/(du)=2u=2lnv=2ln(sinw)=2ln(sin(2x))
(dv)/(du)=1/v=1/sinw=1/sin(2x)
(dv)/(dw)=cosw=cos(2x)
(dw)/dx=2
dy/dx=2ln(sin(2x))xx1/sin(2x)xxcos(2x)xx2
=4cot(2x)ln(sin(2x))