What is the derivative of ln( sqrt(x^2+1))ln(x2+1)?

1 Answer

d/dx (ln(sqrt(x^2+1))) = x/(x^2+1)ddx(ln(x2+1))=xx2+1

Explanation:

Using the chain rule:

d/dx (ln(sqrt(x^2+1))) = 1/sqrt(x^2+1) d/dx sqrt(x^2+1)ddx(ln(x2+1))=1x2+1ddxx2+1

d/dx (ln(sqrt(x^2+1))) = 1/sqrt(x^2+1) 1/(2sqrt(x^2+1))d/dx (x^2+1)ddx(ln(x2+1))=1x2+112x2+1ddx(x2+1)

d/dx (ln(sqrt(x^2+1))) = 1/(2(x^2+1))(2x)ddx(ln(x2+1))=12(x2+1)(2x)

d/dx (ln(sqrt(x^2+1))) = x/(x^2+1)ddx(ln(x2+1))=xx2+1

We can also note that using the properties of logarithms:

(ln(sqrt(x^2+1))) = 1/2 ln(x^2+1)(ln(x2+1))=12ln(x2+1)

and simplify the passages:

d/dx (ln(sqrt(x^2+1))) = 1/2 d/dx ln(x^2+1) = 1/2 1/(x^2+1) d/dx (x^2+1) = (1/2)( 1/(x^2+1) )(2x )= x/(x^2+1)ddx(ln(x2+1))=12ddxln(x2+1)=121x2+1ddx(x2+1)=(12)(1x2+1)(2x)=xx2+1