What is the derivative of (ln x)^(1/5)(lnx)15?

1 Answer
Aug 24, 2016

1/(5x(lnx)^(4/5))15x(lnx)45

Explanation:

differentiate using the color(blue)"chain rule"chain rule

color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)

color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(lnx)=1/x)color(white)(a/a)|)))

let y=(lnx)^(1/5)

now let u=lnxrArr(du)/(dx)=1/x

and y =u^(1/5)rArr(dy)/(du)=1/5u^(-4/5)

substitute these values into (A) convert u back to x.

rArrdy/dx=1/5u^(-4/5)xx1/x=1/(5x(lnx)^(4/5)