What is the derivative of ln(x^2+y^2)?

1 Answer
Oct 10, 2015

It depends on whether we need d/dx or d/dt

Explanation:

For d/dt

d/dt(ln(x^2+y^2)) = 1/(x^2+y^2) d/dt(x^2+y^2)

= 1/(x^2+y^2) * (2xdx/dt + 2y dy/dt)

For d/dx

d/dx(ln(x^2+y^2)) = 1/(x^2+y^2) d/dx(x^2+y^2)

= 1/(x^2+y^2) * (2x+ 2y dy/dx)