What is the derivative of lnx^lnx?

2 Answers
May 19, 2018

= 2 (ln x)/x

Explanation:

(lnx^lnx)^'

= (ln x lnx )^'

= (ln^2 x )^'

= 2 ln x * 1/x

May 19, 2018

lnx^(lnx)*(ln(lnx)+1)/x

Explanation:

y=lnx^(lnx)=e^(ln(lnx^(lnx))

(y)'=(e^(ln(lnx^(lnx))))' =

e^(ln(lnx^(lnx)))*(ln(lnx^(lnx)))' =

lnx^(lnx)*(lnx(ln(lnx))' =

lnx^(lnx)*(ln(lnx)/x+lnx*1/lnx(lnx)') =

lnx^(lnx)*(ln(lnx)/x+cancel(lnx)*1/(xcancel(lnx))) =

lnx^(lnx)*(ln(lnx)+1)/x