What is the derivative of log_10((x^2-1)/x)log10(x21x)?

1 Answer
Mar 31, 2017

see below

Explanation:

Use the following Properties of Logarithm to expand the problem before taking derivatives.

  1. color(red)(log_b(xy)=log_bx+log_bylogb(xy)=logbx+logby
  2. color(red)(log_b(x/y)=log_bx-log_bylogb(xy)=logbxlogby
  3. color(red)(log_b x^n =n log_bxlogbxn=nlogbx

Then use the formula color(red)(d/dx(log_bf(x))=1/(f(x)ln b) * f'(x) to find the derivative

y=log_10((x^2-1)/x)

=log_10(x^2-1)-log_10 x

color(blue)(y'=1/((x^2-1)ln10)*2x-1/(xln10)

color(blue)(y'=(2x)/((x^2-1)ln10)-1/(xln10)