What is the derivative of sin^2(lnx)?

1 Answer
Dec 23, 2015

(2sin(lnx)cos(lnx))/x

Explanation:

Use the chain rule.

First, treat sin^2(lnx) as u^2 where u=sin(lnx).

d/dx[u^2]=2u*u'

Thus, d/dx[sin^2(lnx)]=2sin(lnx)d/dx[sin(lnx)]

To find d/dx[sin(lnx)], treat it as sin(v) where v=lnx.

d/dx[sin(v)]=cos(v)*v'

Thus, d/dx[sin(lnx)]=cos(lnx)d/dx[lnx]

Also, d/dx[lnx]=1/x.

Plug this in:

d/dx[sin(lnx)]=(cos(lnx))/x

Plug this in:

d/dx[sin^2(lnx)]=(2sin(lnx)cos(lnx))/x