What is the derivative of sin^2(x) cos (x)sin2(x)cos(x)?

2 Answers
Nov 21, 2016

dy/dx = sinx(3cos^2x- 1)dydx=sinx(3cos2x1)

Explanation:

y = (1 - cos^2x)cosx = cosx - cos^3xy=(1cos2x)cosx=cosxcos3x

We know the derivative of cosxcosx is -sinxsinx. Letting y = u^3y=u3 and u = cosxu=cosx, we have: (cos^3x)' = -sinx3u^2 = -sinx3(cosx)^2 =-3cos^2xsinx

The derivative of the entire expression is:

dy/dx = -sinx - ( -3cos^2xsinx)

dy/dx = 3cos^2xsinx - sinx

dy/dx= sinx(3cos^2x- 1)

Hopefully this helps!

Nov 21, 2016

sin x(3 cos^2 x -1)

Explanation:

d/dx (sin^2 x cos x)= sin^2 x d/dx cosx + cos x d/dx sin^2 x

= -sin^2 x sinx +cos x (2sinx d/dx sinx)

= - sin^3 x +2sin x cos^2 x

=sin x (-sin^2 x +2 cos^2x)

=sin x (cos^2x -1 + 2 cos^2 x)

= sin x(3 cos^2 x -1)