What is the derivative of sin^2x/cosxsin2xcosx?

1 Answer
May 28, 2018

f'(x)=((sinx)(2cos^2x+sin^2x))/cos^2x

Explanation:

f(x)=(sin^2x)/cosx

f'(x)=(cosxtimes2sinxcosx-sin^2xtimes-sinx)/cos^2x

f'(x)= (2sinxcos^2x+sin^3x)/cos^2x

f'(x)=((sinx)(2cos^2x+sin^2x))/cos^2x

The quotient rule is given by:

f(x)=u/v

f'(x)=(vu'-uv')/v^2