What is the derivative of sin(x(pi/8))?

1 Answer
Jan 10, 2018

y'=d/dx[sin((pix)/8)]=pi/8cos((pix)/8)

Explanation:

Apply the Chain Rule:

y'=d/dx[f(g(x)]=f'(g(x))*g'(x)

Given: sin(x(pi/8)), We can rewrite this as sin((pix)/8)

Let f(x)=sinx and g(x)=(pix)/8

Thus, f'(x)=cosx and g'(x)=pi/8

So,

y'=d/dx[sin((pix)/8)]=cos((pix)/8)*pi/8