What is the derivative of sqrt(7x)?

2 Answers
Jan 16, 2016

7/(2sqrt(7x))

Explanation:

rewrite the function as: sqrt(7x) = (7x )^(1/2 )

applying the 'chain rule' : 1/2 (7x)^(-1/2 ). d/dx (7x)

= 1/2 (7x)^(-1/2)(7) = 7/(2sqrt(7x))

Jan 16, 2016

sqrt7/(2sqrtx), or, if you disapprove of radicals in the denominator, it is sqrt(7x)/(2x)

Explanation:

sqrt(7x) = sqrt7sqrtx and d/dx(sqrtx)=1/(2sqrtx).

Therefore,

d/dx(sqrt(7x)) = sqrt7d/dx(sqrtx) = sqrt7(1/(2sqrtx)) = sqrt7/(2sqrtx).

Eliminate the square root from the denominator if necessary.