What is the derivative of sqrt(x - 2)?

1 Answer
Jun 24, 2016

f^(')=sqrt(x-2)/(2x-4)

Explanation:

I prefer to use a particular notation.

Let u=x-2" " Then " "(du)/(dx)=1

Let " "y=sqrt(x-2)" "=" "sqrt(u)" "=" "u^(1/2)

(dy)/(du)=1/2 u^(1/2-1)-> 1/2u^(-1/2)

But (dy)/(dx)" "=" "(du)/(dx)xx(dy)/(du)

=>(dy)/(du)= 1xx1/(2sqrt(x-2))

Multiply by 1 in the form of 1=sqrt(x-2)/sqrt(x-2)

=>(dy)/(du)= (sqrt(x-2))/(2(x-2))" "=" "sqrt(x-2)/(2x-4)

Or if you prefer:

f^(')=sqrt(x-2)/(2x-4)