What is the derivative of T(w)=cot^3(3w+1)?

1 Answer
Mar 27, 2018

T^'(w)=-9cot^2(3w+1)csc^2(3w+1)

Explanation:

We know that,

color(red)((1)d/(dx)(x^n)=nx^(n-1)

color(red)((2)d/(dx)(cotx)=-csc^2x

Here,

T(w)=cot^3(3w+1)=(cot(3w+1))^3

Diff.w.r.t. 'w'

T^'(w)=3(cot(3w+1))^2d/(dw)((cot(3w+1))...toApply(1)

=3cot^2(3w+1)(-csc^2(3w+1))d/(dw)(3w+1).toApply(2)

=-3cot^2(3w+1)csc^2(3w+1)(3)

=-9cot^2(3w+1)csc^2(3w+1)