What is the derivative of tan(4x)^tan(5x)?
1 Answer
Apr 24, 2016
We have the function
y=tan(4x)^tan(5x)
Take the natural logarithm of both sides:
ln(y)=ln(tan(4x)^tan(5x))
Using the rule
ln(y)=tan(5x)*ln(tan(4x))
Differentiate both sides. The chain rule will be in effect on the left hand side, and primarily we will use the product rule on the right hand side.
dy/dx(1/y)=ln(tan(4x))d/dxtan(5x)+tan(5x)d/dxln(tan(4x))
Differentiate each, again using the chain rule.
dy/dx(1/y)=5sec^2(5x)ln(tan(4x))+tan(5x)((4sec^2(4x))/tan(4x))
Multiply this all by
dy/dx=tan(4x)^tan(5x)(5sec^2(5x)ln(tan(4x))+(4sec^2(4x)tan(5x))/tan(4x))