What is the derivative of [tan(abs(x))]^(-1) ?

1 Answer
May 30, 2017

d/dx(cot|x|)={(-csc^2x, x>=0),(csc^2x, x< 0):}

Explanation:

We have (tan|x|)^-1=cot|x| {(cotx, x>=0),(-cotx, x <0):}

Note that cot(-x)=cos(-x)/sin(-x)=cosx/-sinx=-cotx

cotx=cosx/sinx

d/dx(cotx)=d/dx(cosx/sinx)

d/dx(cosx/sinx)=(-sin^2x-cos^2x)/sin^2x=-1/sin^2x=-csc^2x

therefored/dx(-cotx)=csc^2x

d/dx(cot|x|)={(-csc^2x, x>=0),(csc^2x, x< 0):}