What is the derivative of this function csc^-1(3x)csc1(3x)?

1 Answer
Jul 4, 2017

d/(dx) (csc^-1(3x)) = color(blue)(-1/((sqrt(9-1/(x^2)))x^2)ddx(csc1(3x))=1(91x2)x2

Explanation:

We can use the chain rule...

d/(dx) (csc^-1(3x)) = (dcsc^-1(u))/(du) (du)/(dx)ddx(csc1(3x))=dcsc1(u)dududx

where

u = 3xu=3x

and

d/(du) (csc^-1(u)) = -1/((sqrt(1-1/(u^2)))u^2)ddu(csc1(u))=1(11u2)u2:

= -(d/(dx)(3x))/((9sqrt(1-1/(9x^2)))x^2)=ddx(3x)(9119x2)x2

Factor out the constant, 33:

= -(3d/(dx)(x))/((9sqrt(1-1/(9x^2)))x^2)=3ddx(x)(9119x2)x2

Simplify the 3/939 quantity:

= -(d/(dx)(x))/((3sqrt(1-1/(9x^2)))x^2)=ddx(x)(3119x2)x2

And the derivative of xx is 11, according to the power rule:

= color(blue)(-1/((3sqrt(1-1/(9x^2)))x^2)=1(3119x2)x2

or

color(blue)(-1/((sqrt(9-1/(x^2)))x^2)