We can use the chain rule...
d/(dx) (csc^-1(3x)) = (dcsc^-1(u))/(du) (du)/(dx)ddx(csc−1(3x))=dcsc−1(u)dududx
where
u = 3xu=3x
and
d/(du) (csc^-1(u)) = -1/((sqrt(1-1/(u^2)))u^2)ddu(csc−1(u))=−1(√1−1u2)u2:
= -(d/(dx)(3x))/((9sqrt(1-1/(9x^2)))x^2)=−ddx(3x)(9√1−19x2)x2
Factor out the constant, 33:
= -(3d/(dx)(x))/((9sqrt(1-1/(9x^2)))x^2)=−3ddx(x)(9√1−19x2)x2
Simplify the 3/939 quantity:
= -(d/(dx)(x))/((3sqrt(1-1/(9x^2)))x^2)=−ddx(x)(3√1−19x2)x2
And the derivative of xx is 11, according to the power rule:
= color(blue)(-1/((3sqrt(1-1/(9x^2)))x^2)=−1(3√1−19x2)x2
or
color(blue)(-1/((sqrt(9-1/(x^2)))x^2)