What is the derivative of this function y=csc^-1(e^x)?

1 Answer
Mar 18, 2018

The answer is =-e^-x/sqrt(1-e^(-2x))

Explanation:

The function is

y=arc csc(e^x)

Therefore,

cscy=e^x

Differentiating wrt x

(1/siny)'dy/dx=e^x

(-1/sin^2y*cosy)dy/dx=e^x

dy/dx=-tany*siny*e^x

siny=1/e^x

tany=siny/cosy=(e^(-x)/sqrt(1-e^(-2x)))

Therefore,

dy/dx=-(e^(-x)/sqrt(1-e^(-2x)))*1/e^x*e^x

=-e^-x/sqrt(1-e^(-2x))