What is the derivative of this function y=e^x(sec^-1x)y=ex(sec1x)?

1 Answer
Jun 30, 2017

y'=e^x(sec^-1x+\frac{1}{\abs{x}\sqrt{x^2-1}})

Explanation:

The differentiation rule for sec^-1(x) is \frac{d}{dx}[sec^-1(x)]=\frac{1}{\abs{x}\sqrt{x^2-1}}.

Using this, we can differentiate:
y=e^x(sec^-1x)
y'=[e^x]'\cdot(sec^-1x) + e^x\cdot[sec^-1x]'
y'=e^x(sec^-1x)+e^x(\frac{1}{\abs{x}\sqrt{x^2-1}})
y'=e^x(sec^-1x+\frac{1}{\abs{x}\sqrt{x^2-1}})