What is the derivative of x tan^-1 - ln sqrt(1+x^2)?
1 Answer
Feb 5, 2017
Explanation:
y=xtan^-1(x)-lnsqrt(1+x^2)
First rewrite the logarithm using
y=xtan^-1(x)-1/2ln(1+x^2)
Now when we differentiate, we will use the product rule for
dy/dx=(d/dxx)tan^-1(x)+x(d/dxtan^-1(x))-1/2(1/(1+x^2))(d/dx(1+x^2))
dy/dx=tan^-1(x)+x(1/(1+x^2))-1/2(1/(1+x^2))(2x)
dy/dx=tan^-1(x)+x/(1+x^2)-x/(1+x^2)
dy/dx=tan^-1(x)