What is the derivative of x tan^-1 - ln sqrt(1+x^2)?

1 Answer
Feb 5, 2017

d/dx(xtan^-1(x)-lnsqrt(1+x^2))=tan^-1(x)

Explanation:

y=xtan^-1(x)-lnsqrt(1+x^2)

First rewrite the logarithm using ln(a^b)=bln(a):

y=xtan^-1(x)-1/2ln(1+x^2)

Now when we differentiate, we will use the product rule for xtan^-1(x) and the chain rule for ln(1+x^2).

dy/dx=(d/dxx)tan^-1(x)+x(d/dxtan^-1(x))-1/2(1/(1+x^2))(d/dx(1+x^2))

dy/dx=tan^-1(x)+x(1/(1+x^2))-1/2(1/(1+x^2))(2x)

dy/dx=tan^-1(x)+x/(1+x^2)-x/(1+x^2)

dy/dx=tan^-1(x)