What is the derivative of y=(1+x)^(1/x)?

1 Answer
Aug 1, 2016

dy/dx=[(1+x)^(1/x){x-(1+x)ln(1+x)}]/(x^2(1+x), or,

=[(1+x)^(1/x-1){x-(1+x)ln(1+x)}]/x^2

Explanation:

y=(1+x)^(1/x)..............(star)

:. lny=ln(1+x)^(1/x)

:. lny=1/xln(1+x)=(ln(1+x))/x

:. d/dxlny=d/dx{(ln(1+x))/x}

:. d/dylny*dy/dx={xd/dxln(1+x)-ln(1+x)d/dxx}/x^2

Here, we have used the Chain Rule & the Quotient Rule.

:. 1/ydy/dx={x/(1+x)-ln(1+x)}/x^2={x-(1+x)ln(1+x)}/(x^2(1+x)

:. dy/dx=[y{x-(1+x)ln(1+x)}]/(x^2(1+x)

Using (star), we get,

dy/dx=[(1+x)^(1/x){x-(1+x)ln(1+x)}]/(x^2(1+x), or,

=[(1+x)^(1/x-1){x-(1+x)ln(1+x)}]/x^2