What is the derivative of y=arctan sqrt((1-x)/(1+x))?

1 Answer
Nov 26, 2017

(dy)/(dx)=-sqrt((1+x)^5)/(2sqrt(1-x))

Explanation:

Let u=sqrt((1-x)/(1+x)). Also observe (1-x)/(1+x)=1-(2x)/(1+x)

then using chain rule (du)/(dx)=1/(2sqrt((1-x)/(1+x)))xxd/(dx)(1-(2x)/(1+x))

= sqrt(1+x)/(2sqrt(1-x))xxd/(dx)(1-(2x)/(1+x))

= sqrt(1+x)/(2sqrt(1-x))xx(-(2(1+x)-2x)/(1+x)^2)

= sqrt(1+x)/(2sqrt(1-x))xx(-2/(1+x)^2)

= -sqrt(1+x)^3/sqrt(1-x)

Hence y=arctanu and hence (dy)/(dx)=1/(1+u^2)xx(du)/(dx)

i.e. (dy)/(dx)=1/(1+(1-x)/(1+x))xx(-sqrt((1+x)^3)/sqrt(1-x))

= -(1+x)/2xxsqrt((1+x)^3)/sqrt(1-x)

= -sqrt((1+x)^5)/(2sqrt(1-x))