What is the derivative of y = arctan(x - sqrt(1+x^2))?

1 Answer
Aug 19, 2017

(sqrt(1+x^2)-x)/(2sqrt(1+x^2)(x^2-xsqrt(1+x^2)+1))

Explanation:

The derivative of arctanx is d/dxarctanx=1/(1+x^2), so the chain rule tells us that when we have a function inside the arctangent function, d/dxarctanu=1/(1+u^2)(du)/dx.

Thus:

d/dxarctan(x-sqrt(1+x^2))=1/(1+(x-sqrt(1+x^2))^2)d/dx(x-sqrt(1+x^2))

Note that (x-sqrt(1+x^2))^2=x^2-2xsqrt(1+x^2)+(1+x^2).

Also note that d/dxsqrt(1+x^2)=d/dx(1+x^2)^(1/2)=1/2(1+x^2)^(-1/2)(2x)=x/sqrt(1+x^2).

=1/(2x^2-2xsqrt(1+x^2)+2)(1-x/sqrt(1+x^2))

=1/2*1/(x^2-xsqrt(1+x^2)+1)((sqrt(1+x^2)-x)/sqrt(1+x^2))

=(sqrt(1+x^2)-x)/(2sqrt(1+x^2)(x^2-xsqrt(1+x^2)+1))