What is the derivative of y= arctan(x - sqrt(1+x^2))?

1 Answer
Apr 20, 2017

y'=1/(2x^2+2)

Explanation:

y=arctan(x-sqrt(1+x^2))

tany=x-sqrt(1+x^2)

y'sec^2y=1-x/sqrt(1+x^2)

y'=cos^2y(1-x/sqrt(1+x^2))

cos^2y=1/(1+tan^2y)=1/(1+(x-sqrt(1+x^2))^2

y'=(1-x/sqrt(1+x^2))/(1+(x-sqrt(1+x^2))^2)

With a bit of tidying up, this becomes:

y'=1/(2x^2+2)