What is the derivative of y = ln(2x^3-x^2)?

1 Answer
Oct 8, 2016

d/(dx)lnf(x)=(f'(x))/f(x)

Explanation:

Recall that d/(dx)lnx=1/x

y=ln(2x^3-x^2) is a function within a function; we can apply chain rule.

Let u=2x^3-x^2, then y=lnu
(dy)/(du)=1/u and (du)/(dx)=6x^2-2x
(dy)/(dx)=(dy)/(du)x(du)/(dx)=1/(2x^3-x^2)*(6x^2-2x)=(6x^2-2x)/(2x^3-x^2)