What is the derivative of y=ln sqrt(x+1)^5/sqrt(x+2)^20?

1 Answer
Dec 14, 2017

y'=5/[(2x+2)*(x+2)^10]-(25Ln(x+1))/(x+2)^11

Explanation:

y=Ln(sqrt(x+1)^5)/(sqrt(x+2)^20)

=5/2Ln(x+1)/(x+2)^10

y*(x+2)^10=5/2*Ln(x+1)

y'(x+2)^10+10y*(x+2)^9=5/(2x+2)

y'(x+2)^10=5/(2x+2)-10y*(x+2)^9

y'=5/[(2x+2)*(x+2)^10]-(10y)/(x+2)

y'=5/[(2x+2)*(x+2)^10]-10/(x+2)*5/2Ln(x+1)/(x+2)^10

y'=5/[(2x+2)*(x+2)^10]-(25Ln(x+1))/(x+2)^11