What is the derivative of y=(sinx)^(2x)?

1 Answer
Mar 2, 2017

dy/dx = 2sin^(2x)(x)(x cotx + ln(sinx))

Explanation:

y = (sinx)^(2x) = sin^(2x)(x)

lny =2x*ln(sinx)

Applying Implicit differentiation, the product rule, standard differentials and the chain rule:

1/y dy/dx = 2x*1/sinx * cosx + ln(sinx)*2

dy/dx = y*(2x*cosx/sinx +2ln(sinx))

= y* 2(xcotx+ln(sinx))

= (sinx)^(2x)*2(xcotx+ln(sinx))

= 2sin^(2x)(x)(x cotx + ln(sinx))