What is the derivative of y= (sqrt x) ^x?

2 Answers
Dec 21, 2016

d/(dx) (sqrtx)^x = 1/2(sqrtx)^x(1+lnx)

Explanation:

We can write the function as:

(sqrtx)^x= (x^(1/2))^x= x^(x/2)=e^((xlnx)/2)

Now:

d/(dx) (sqrtx)^x = d/(dx)e^((xlnx)/2) = e^((xlnx)/2)*d/(dx)(xlnx)/2=1/2e^((xlnx)/2) (x*1/x+lnx)=1/2(sqrtx)^x(1+lnx)

Dec 21, 2016

Take the natural logarithm (written ln) of both sides.

lny = ln(sqrt(x))^x

To get rid of the exponent, use the power rule of logarithms that states that lna^n = nlna

lny = xlnsqrt(x)

Differentiate the left hand side using implicit differentiation and the right hand using the chain and product rules. Before using the product rule, we must use the chain rule.

let y = lnu and u = sqrt(x). Then dy/(du) = 1/u and (du)/dx = 1/(2sqrt(x))

Call f(x) = ln(sqrt(x)).

f'(x) = dy/(du) xx (du)/dx

f'(x) = 1/u xx 1/(2sqrt(x))

f'(x) = 1/sqrt(x) xx 1/(2sqrt(x))

f'(x) = 1/(2x)

Now to the rest of the function:

1/y(dy/dx) = 1(lnsqrt(x)) + x(1/(2x))

1/y(dy/dx) = lnsqrt(x) + 1/2

dy/dx= (sqrt(x))^x(lnsqrt(x) + 1/2)

Hopefully this helps!