The distance formula for Cartesian coordinates is
d=sqrt((x_2-x_1)^2+(y_2-y_1)^2d=√(x2−x1)2+(y2−y1)2
Where x_1, y_1x1,y1, andx_2, y_2x2,y2 are the Cartesian coordinates of two points respectively.
Let (x_1,y_1)(x1,y1) represent (-12,4)(−12,4) and (x_2,y_2)(x2,y2) represent (8,3)(8,3).
implies d=sqrt((8-(-12))^2+(3-4)^2⇒d=√(8−(−12))2+(3−4)2
implies d=sqrt((8+12)^2+(-1)^2⇒d=√(8+12)2+(−1)2
implies d=sqrt((20)^2+(-1)^2⇒d=√(20)2+(−1)2
implies d=sqrt(400+1)⇒d=√400+1
implies d=sqrt(401)⇒d=√401
implies d=sqrt(401)⇒d=√401
Hence the distance between the given points is sqrt(401)√401.